Friday, September 03, 2010

STAR TOPLOGY


Star networks are one of the most common computer network topologies. In its simplest form, a star network consists of one central switch, hub or computer, which acts as a conduit to transmit messages.The star topology reduces the chance of network failure by connecting all of the systems to a central node. When applied to a bus-based network, this central hub rebroadcasts all transmissions received from any peripheral node to all peripheral nodes on the network, sometimes including the originating node. All peripheral nodes may thus communicate with all others by transmitting to, and receiving from, the central node only.Data on a star network passes through the hub, switch, or concentrator before continuing to its destination. The hub, switch, or concentrator manages and controls all functions of the network. It is also acts as a repeater for the data flow. This configuration is common with twisted pair cable. However, it can also be used with coaxial cable or optical fibre cable.

Advantages


  • Better performance: star topology prevents the passing of data packets through an excessive number of nodes. At most, 3 devices and 2 links are involved in any communication between any two devices. Although this topology places a huge overhead on the central hub, with adequate capacity, the hub can handle very high utilization by one device without affecting others.
  • Isolation of devices: Each device is inherently isolated by the link that connects it to the hub. This makes the isolation of individual devices straightforward and amounts to disconnecting each device from the others. This isolation also prevents any non-centralized failure from affecting the network.
  • Benefits from centralization: As the central hub is the bottleneck, increasing its capacity, or connecting additional devices to it, increases the size of the network very easily. Centralization also allows the inspection of traffic through the network. This facilitates analysis of the traffic and detection of suspicious behavior.
  • Simplicity: This topology is easy to understand, establish, and navigate. Its simplicity obviates the need for complex routing or message passing protocols. Also, as noted earlier, the isolation and centralization it allows simplify fault detection, as each link or device can be probed individually.
  • Easy to install and wire.  
  • Easy to detect faults and to remove parts.
  • No disruptions to the network when connecting or removing devices.
Disadvantages


The primary disadvantage of a star topology is the high dependence of the system on the functioning of the central hub. While the failure of an individual link only results in the isolation of a single node, the failure of the central hub renders the network inoperable, immediately isolating all nodes. The performance and scalability of the network also depend on the capabilities of the hub. Network size is limited by the number of connections that can be made to the hub, and performance for the entire network is capped by its throughput. While in theory traffic between the hub and a node is isolated from other nodes on the network, other nodes may see a performance drop if traffic to another node occupies a significant portion of the central node's processing capability or throughput. Furthermore, wiring up of the system can be very complex and high costing.

No comments:

Post a Comment